Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009685

RESUMO

Assessing the nutritional status and identifying major causes of mortality in larvae experiencing varying degrees of starvation are crucial for establishing appropriate feeding protocols and enhancing the welfare of hatchery-reared fish. The black rockfish Sebastes schlegelii is an important species in aquaculture and stock enhancement efforts in China, Japan, and Korea. This study aimed to identify optimal diagnostic morphometric indicators of starvation in newly hatched (0-6 days post-hatch, DPH) and postlarval stages (27-37 DPH) of this valuable fish species through histological analyses. Our findings revealed that certain morphometric parameters, including body length, the ratios of eye diameter to head height, body height to body length, and abdomen height to body height, exhibit sensitivity to starvation during both larval and postlarval stages. Particularly, the ratios of body height to body length and abdomen height to body height emerged as the most sensitive morphometric indicators of starvation. Histological examinations of the digestive system revealed rapid alterations in the morphology of hepatic parenchymal cells, accompanied by a significant decrease in the number of lipid cells in the liver during episodes of food deprivation. Starvation induced cellular degeneration in the digestive organs, manifested by reduced heights of epithelial cells and mucosal layers in the intestine, oesophagus, and stomach, along with degeneration and separation of muscle fibers. Among these variables, the height of the intestinal submucosa and muscle layer emerged as the most sensitive indicators reflecting nutritional conditions in newly hatched larvae. In contrast, the height of intestinal striated borders and mucosal folds proved to be the most sensitive indicators in the postlarval stage. Furthermore, the height of intestinal epithelial cells and the number of lipid vacuoles in enterocytes exhibited high sensitivity to food deprivation in both newly hatched larvae and postlarvae. These findings underscore the varying resilience of fish to starvation during different developmental phases and highlight the utility of morphological sensitivity characteristics as reliable diagnostic indices for assessing nutritional status in relation to starvation or suboptimal feeding during the early developmental stages of black rockfish in hatchery-reared processes.

2.
J Colloid Interface Sci ; 604: 469-479, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34274711

RESUMO

HYPOTHESIS: Water contamination from heavy metal ions is a major global environmental concern. Adsorbents based on biomaterials have been demonstrated to possess remarkable removal efficiency for metal ions, but the adsorption model of biosorbents is not clear and much efforts should be devoted to study the adsorption behaviors and understand the adsorption mechanism. EXPERIMENTS: The multifunctional rhodamine-modified chitosan (RMC) hydrogel for Hg2+ adsorption with fluorescent turn-ON properties was fabricated through grafting the rhodamine-modified poly (ethylene glycol) benzaldehyde (RM-PEG) onto the hydrogel network serving as the fluorescence/colorimetric sensing receptor. The adsorption behaviors and colorimetric sensing mechanism of RMC hydrogel towards Hg2+ were investigated in detail. FINDINGS: RMC hydrogel can remove more than 96.5% of Hg2+ from aqueous solution with significant fluorescence response and colorimetric change. The high adsorption selectivity and colorimetric sensing mechanism of RMC hydrogel towards Hg2+ can be explained by the hard and soft acid/base (HSAB) theory. The O atom in hydroxyl and carbonyl groups together with the N atom in amine/imine groups of RMC hydrogel play a vital role in the adsorption of Hg2+, while the colorimetric response and fluorescence enhancement of the hydrogel after adsorption are attributed to the specific spiro-lactam structure of rhodamine moieties. The adsorption isotherms and kinetics were investigated and well described by Freundlich isotherm and pseudo-second-order kinetic model. Furthermore, RM-PEG showed low cytotoxicity towards mouse embryonic fibroblast cells and RMC hydrogel can be used as a fluorescent pH indicator from 4.2 to 7.4, demonstrating the potential applications of RMC hydrogel in biological diagnosis.


Assuntos
Técnicas Biossensoriais , Quitosana , Mercúrio , Poluentes Químicos da Água , Purificação da Água , Adsorção , Animais , Colorimetria , Fibroblastos , Hidrogéis , Concentração de Íons de Hidrogênio , Cinética , Camundongos , Rodaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...